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I.  INTRODUCTION 

1 2 Major stable decomposition products of HMX and RDX have been shown ' to 
be HCHO, N2O, NO2 and HCN.  It is our plan to study premixed flames of these 
decomposition products in an effort to understand chemical mechanisms in the 
combustion of these propellants.  Initially we have chosen to investigate 
CH4/N2O flames for several reasons.  This flame is experimentally easier to 
produce so that the emphasis can be placed on developing the diagnostic 
technique.  Secondly this flame system has some features analogous to the 
HCHO/N2O flame system in that it reaches similar flame temperature, has one 
carbon atom, and exhibits nitrogen chemistry (i.e. NH and CN are formed). 
Finally the CH4/N2O flame is luminous which provides a test as to whether the 
Raman diagnostic technique can obtain sufficient signal to noise ratios from 
which adequate determination of temperatures and concentrations can be made 
on a reasonable time scale. 

II.  EXPERIMENTAL 

The experimental apparatus used for generating and detecting Raman signals 
is shown schematically in Figure 1.  A nominal 4W argon ion laser operating 
at 488 nm is used as the excitation source.  The laser cavity has been extended; 
two highly reflective focusing mirrors with radius of curvature 0.3 and 1.0m 
are used to make an intracavity beam waist of approximately 100 ym.  The intra- 
cavity circulating power is about 50 W and only minor attenuation occurs when 
a steady CH4/N2O flame is inserted in the cavity at the beam waist.  The 
scattered light is imaged onto the slits of a 0.25 m monochromator with two 
double convex quartz lenses.  These are a f/1.33 collector lens with a 10 cm 
focal length and an f/1.5 focusing lens with 7.6 cm focal length.  The detected 
light is from a sampled volume which approximates a cylinder of 100 um diameter 
and 2 mm in length. A silicon intensified target vidicon tube (PAR Corp. Optical 
Multichannel Analyzer, OMA, Model 1205D) is used to detect the dispersed light. 
Using a grating of 1180 grooves/mm approximately 40 nm of radiation can be 
observed at one time with this system.  This radiation is dispersed into 500 
memory channels which, when coupled with 100 ym monochromator entrance slits, 
provides a resolution, FWHM, of 12 cm" .  Two memories of the OMA allow for 
summation of scans and subsequent subtraction of background to obtain the 
signal due to Raman scattering or laser induced fluorescence. Accumulation 
times for the data reported here vary from 2 to 300 s per spectrum.  For the 
temperature determination only the spectral data are required; however, for 
concentration measurements the laser power and a calibration factor are needed 
to determine absolute concentrations.  The small fraction of laser light 
transmitted by one of the high - reflectivity mirrors is measured with a 
thermopile to determine the average laser flux during data acquisition. 
Calibration factors for N2 and H2O are obtained from ambient air.  Pure H2, 
CO, or CO2 are flowed through the burner for these gas calibrations.  The 
absence of a N2 Raman signal for these pure gases insures that the flow is 
sufficient for removing ambient air. 

2 
C.U,  Morgan and R.A.  Beyer,   "ESR and IR Speatrosaopia Studies of HMX and 
RDX Thermal Decomposition",   15th JANNAF Combustion Meeting Proceedings, 
CPIA Publication No.   297  (1978). 

2 
B.B.   Goshgarian,   "Thermal Decomposition of Cyalotrimethylenetrinitramine 
'RDX)  and Cyalotetramethylenetetranitramine  (HMX)," Report AFRPL-TR-78-76, 
Edwards AFB,   CA     (Oct.   1978). 
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(a) 

Figure 1.    Pictorial  diagram of laser Raman experiment, 

SINTERED COPPER 
POROUS PLUG 

(b) 
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Figure 2. Sintered burners used in this study where 
(a) is 28 mm in diameter and (b) is 64 mm 
in diameter. 



Two similar types of porous plug burners shown on Figure 2 have been used 
in this study.  Burner (a) is a sintered copper burner with a 28 mm diameter 
porous plug which is edged cooled.  This burner was fabricated entirely in house. 
Burner (b) is a sintered bronze burner with a 64 mm diameter porous plug and 
the water cooling coil embedded in the sintered material. This sintered plug 
was purchased commercially.  These burners have the advantage of simple one 
dimensional geometry, that is the vertical distance above the burner is the 
only direction in which the flame properties are changing excluding edge effects, 
and can be operated over a wide range of fuel to oxidizer ratios.  The dis- 
advantages at atmospheric pressure are that heat extraction by the burner head 
cools the flame substantially and the thin primary reaction zone sits on the 
burner surface limiting its access. 

Gas flows have been regulated with capillary flow meters which were 
calibrated with a wet test meter. The accuracy of the flows should be better 
than ± 5%. These burners are used without any gas shroud and some mixing 
occurs at the air/flame interface. 

III.  RESULTS AND ANALYSIS 

The Raman effect is a light scattering phenomena whereby a small fraction 
of photons of light scattering from molecules have their energy changed.  If 
the molecule gains energy it is termed Stokes scattering and anti-Stokes 
scattering if the molecule loses energy.  Raman scattering is well suited to 
probing atmospheric pressure flames since the scattering event is essentially 
instantaneous (^lO-^s).  This insures that the process is unaltered by 
collisions.  Raman signals arise from both allowed rotational and vibrational 
energy levels. The selection rules are Av=0, ±1 and AJ=0, ±2 where v and J 
are the vibrational and rotational quantum numbers, respectively.  In this 
report we are only concerned with the transitions where Av=+1 and AJ=0.  These 
transitions are called Raman Stokes Q-branch rotational-vibrational (ro-vib) 
transitions. 

Figure 3 is a plot of 500 channels of OMA data obtained in a CH4/N20 
flame. Raman Stokes Q-branch ro-vib signals for N2, CO, and CO2 are clearly 
observable; moreover the VQ^,  V^, V2.3,  and V3_4 transitions are distinct 
for N2.  The total accumulation time for this data was 157s.  Raman Stokes 
Q-branch signals for H2 and H2O are shown on Figure 4. Again the accumulation 
time was 157s. Due to the large rotational constant for H2 distinct 
rotational transitions Q(l) through Q(7) are observed within the VQ-l transi- 
tion for H2.  Figures 3 and 4 comprise typical examples of data from which 
temperature and concentration determinations are made. 

On an expanded wavelength scale digital data for H2, N2 and CO are shown 
on Figures 5 and 6 where the data accumulation times are 157, 6, and 320 s, 
respectively.  Any of these signals can be used for a determination of flame 
temperature; however the signals for N2 have, by far, the best signal to 
noise ratio and therefore were used for the temperature determination. 

Two methods of extracting temperature from the recorded Stokes Q-branch 
ro-vib spectra of N2 were used here.  Peak height ratios of different 
vibrational bands provide a simple method discussed earlier3, to obtain 
temperatures. Since this method uses a limited portion of the recorded 

J.A.   Vanderhoff and R.A.  Beyer3   "Laser Raman Speatrosoopy of Flames:    Theory 
and Preliminary Results", ARBRL-TR-02279,  January 1981.    AD A096195 
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Figure 3.    Raman Stokes Q-branch spectrum for N2,  CO, and C0?. 
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Figure 4.    Raman Stokes Q-branch spectrum for H2 and H?0. 
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spectrum a multiparameter least squares Raman fitting program has been 
developed4 to make full use of the entire Raman spectrum of nitrogen.  This 
program also calculates the standard deviation in the temperatures. When 
comparing the results of the fitting program with the peak height ratio method, 
one finds that the ratio method is accurate to ± 50K in most cases. 

For temperature comparison purposes we have measured a vertical temperature 
profile in the burnt gas region of a stoichiometric CH4/N2O flame produced on 
the 64 mm sintered bronze burner.  Eight different positions on a centerline 
above the burner surface were sampled.  The data together with the computer fits of 
the data are shown on Figure 7a-i.  One position 13.5 mm, was sampled twice 
to check consistency. Three other techniques5 have been used to measure the 
stoichiometric CH4/N2O flame temperatures in the burnt gas region using this 
burner system. These are laser excited fluorescence, laser absorption, and band 
reversal.  Rotationally resolved fluorescence of OH was analyzed to give a 
temperature of 2199±53K. The fitting of laser absorption profiles of OH 
resulted in a temperature of 2179±21K.  The band reversal of OH method gave 
a temperature of 2194±45K. These results agree well with the temperatures 
shown on Figure 7. At distances of greater than 8 mm above the burner surface 
it appears that the flame starts to cool slightly. The adiabatic flame 
temperature for an atmospheric stoichiometric CH4/N2O flame is 2922K calculated 
from the NASA-Lewis thermochemical equilibrium code 6.  The significantly lower 
temperature that we measure is due to heat extraction by the burner head.  Crude 
estimates of the heat being carried away by the cooling water can account for 
all of the temperature decrease from the adiabatic value.5 

In a more complete study we have measured temperature and major species 
concentration in a CH4/N2O flame stabilized on the 28 mm sintered copper burner. 
Two different fuel to oxidizer ratios were studied where the ratios are given 
in terms of the equivalence ratio $  defined as the fuel/oxidizer ratio divided 
by the stoichiometric fuel/oxidizer ratio.  Here the temperatures as a function 
of height above burner surface are obtained by spectral fitting of N2 for the 
cases when $=1.13. Where 0=1.22 peak height ratios of N2 vibrational transitions 
were used.  Note that the flame temperature is higher for this burner.  This 
is due to the fact that the burner head operates at a higher temperature 
because it is edge cooled, which is less efficient. 

The number density for N in the scattering volume is obtained from the 
fitting program with the inclusion of a room air reference (80% N2) and the 
measurement of relative laser power for each spectrum.  For H2, CO, H2O, and 
CO2 areas under recorded spectra have been used to obtain the densities. In these 

4 
A.J.   Kotlar,  Ballistic Research Laboratory Report,  in preparation. 

W.R.  Anderson,  L.J.  Decker,  and A.J.  Kotlar,   "Temperature Profile of a 
Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on 
OH," submitted to Combustion and Flame. 

R.A.  Svehla and B.J.  McBride,   "Fortran IV Computer Program for Calculation of 
Thermodynamic and Transport Properties of Complex Chemical    Systems, " NASA 
TND-7056,   1973. 
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TABLE 1.  VERTICAL PROFILES OF TEMPERATURE AND CONCENTRATION, ABOVE THE 
SINTERED COPPER BURNER SURFACE, IN A CH /N 0 FLAME TOGETHER 
WITH CALCULATED EQUILIBRIUM VALUES 

Height 
(mm) 

2.5 

5.0 

7.5 

10.0 

NASA 
LEWIS 

10.0 

5.5 

7.5 

NASA 
LEWIS 

1.13 

Temperature 
(K) N, 

Iiolar 
CO 

Percent 
H2   H20 

2510 ± 16 

2533 ± 19 

2498 ± 22 

2490 ± 23 

45.6 

44.7 

45.8 

44.7 

7.77 

6.56 

6.44 

5.79 

4.79 25.1 

2.81 23.8 

3.05 25.0 

3.02 24.3 

2500 53.2 5.75 2.71  26.9 

2300 48.6 8.0 

2450 

2350 

58.4     8.6   10.8  30.1 

56.9     7.1    8.4  28.i 

2400 51.9 7.5 4.2  27.1 

CO 

24.5 

21.1 

21.3 

22.4 

9.39 

2-0      1.22     2400 ± 50     45.5    10.0    5.1  15.3      15.4 

5.0      "       2500 50.8     9.7    4.9  26.7      17.3 

10.0     "       2450 60.4    10.3    4.9  30.4      26.7 

22.7 

30.8 

21.7 

8.3 

cases a scaling of -— needs to be applied where v is the initial vibrational 
v 

quantum number and Qv is the vibrational partition function.  For N2 or CO 
at 2500K, this correction changes the number density values by about 30 per 
cent. At flame temperatures the signal to noise ratio for H2 was such that 
only the rotational transitions through Q(7) within the VQ.J transition were 
recorded; the temperature dependent correction for the fraction of H2 in other 
states has been calculated and used here.  At 2500K this correction is about 
20 percent.  Analogous to the work of Stephensons, we have used the v1 band 

7 
S.A.  Kamngstein,  Introduotion to the Theory of the Raman Effeat,  D.  Reidel 
Publishing Co.,  Dordrecht,   Holland.     2972. 

o 

D.A.  Stephenson,   "Non-Intrusive Profiles of Atmospheric Premixed Hydrocarbon- 
Air Flames," 17th Sym.   (Int.)  on Combustion,  p.   993,  Leeds England  (1978). 
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area as a measure of h^O species concentration at room temperature.  This 
approach has been pointed out as a good approximation under conditions where 
hvj >KT, applicable for r^O but not CC^. Although an analysis of the CO2 
Raman spectrum has been reported9, we have not yet implemented this approach. 
The reported values for CO2 come from the areas of the v^ band without 
correction. However, this approach is adequate for relative concentrations since 
the flame temperature is practically constant. 

As a comparison to the experimental measurements for species concentrations 
the equilibrium flame code^ was used to calculate species concentrations for 
atmospheric pressure flames of CH4/N2O of ^«1.13 and $=1.22  where the temper- 
ature was fixed at 2500 and 2400K, respectively. Here the adiabatic flame 
temperature for $=1.13 is 2915K and 2910K for $=1.22.     The horizontal lines 
in Table 1 separate data sets taken on different days and there appears to 
be a systematic trend observed in the variation of the concentration for the 
$=1.22 case.  For each data set, calibration runs were also made to relate 
flame concentrations to known room temperature concentrations.  It is most 
likely that the variations result from possible changes in the calibration 
process.  Nevertheless, there is a general good agreement between the calculated 
equilibrium concentrations and the measured values. 

Experimental collection efficiencies were improved prior to obtaining 
the results for the $=1.13  case and a noticeable improvement in consistency 
is observed.  The experimental results indicate N2, H2O, and CO2 are 
practically constant as a function of burner height.  Temperature is also 
constant indicating that we are above the reaction zone in a region where the 
concentrations are near the equilibrium values.  CO decreases some with burner 
height and H2 exhibits scatter which may be due to low signal levels or slight 
changes in the flow rate.  In this equivalence ratio regime if one changes 
the fuel flow by 5 percent the calculated H2 concentration changes by ^ 50% 
and the CO concentration by **  25%. Hence minute changes in flow can alter these 
concentrations significantly.  As can be seen in Table 1 very good agreement 
is found between the equilibrium calculations and experimental measurements 
with the exception of CO2 discussed previously.  Using just the vj band area 
for H2O results in obtaining excellent agreement with the equilibrium 
calculation. 

IV.  CONCLUSION 

We have demonstrated the ability to obtain complete Raman spectra for 
N2J H2, CO, CO2, and H2O within several minutes using a CW laser in a 
luminous flame.  From these spectra we are able to extract accurate 
temperatures with good spatial resolution. Measurements of the major species 
concentrations are also obtained and agree well with the results of 
equilibrium calculations. 

9 R.J.  Blint,  J.H.  Beahtely  and D.A.  Stephenson,   "Carbon Dioxide  Concentration 
and Temperature in Flames by Raman SpeatrosGopy3 " J.   Quant.   Speotroso.  Radiat. 
Transfer 23.   89  (1980). 
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